Journal of the Atmospheric Sciences Integer Ratios in Earth's Global Mean Energy Flow System: Observation and Explanation

		-
Mo	nucorint	Droft
ivia	nuscript	Dialt

Manuscript Number:	JAS-D-24-0011
Full Title:	Integer Ratios in Earth's Global Mean Energy Flow System: Observation and Explanation
Article Type:	Article
Corresponding Author:	Miklos Zagoni Eotvos Lorand University Budapest, HUNGARY
Corresponding Author's Institution:	Eotvos Lorand University
First Author:	Miklos Zagoni
Order of Authors:	Miklos Zagoni
Abstract:	Integer ratios can be recognized between the components of Earth's global mean energy flow system. If the unit flux is taken to be equal to the longwave cloud radiative effect (LWCRE), each flux components, all-sky and clear-sky, shortwave and longwave, at the top-of-atmosphere (TOA) and at the surface, even the components of the non-radiative energy flux (latent heat and sensible heat) are close to a small integer multiple of the unit flux, typically within the stated range of uncertainty for the given flux component. We show the integer ratio structure on several global energy budget estimates based on observed data from different sources (CERES satellite missions, the GEWEX energy and water cycle studies, or IPCC estimates from climate models and direct surface observations). In the effort of trying to find a plausible explanation for this recognition, we present four radiative transfer constraint equations, yielding a part of the observed integer structure. The first equation is a direct consequence of Schwarzschild's original two-stream relationships; the second is a specific case of them. This pair of equations is for clear-sky conditions; the second pair is an evident all-sky version of the first. A straightforward physical interpretation of the equations is suggested. The set of these four equations can be solved, and the solution is a set of small integers, being equivalent to the found ratios in the observation-based datasets.
Suggested Reviewers:	Martin Wild ETHZ martin.wild@env.ethz.ch IPCC global energy budget expert
	Bjorn Stevens Max Planck Institut für Meteorologie bjorn.stevens@mpimet.mpg.de Global energy budget expert
	Paul Stackhouse NASA Langley Research Center paul.w.stackhouse@nasa.gov Surface radiation budget expert
	Benoit Meyssignac LEGOS CNES benoit.meyssignac@cnes.fr GEWEX radiation budget expert

Dear Dr. Wang,

I am Miklos Zagoni, physicist, retired university professor from Eotvos Lorand University, Budapest, Hungary. I am submitting a manuscript for consideration to Journal of the Atmospheric Sciences, titled "Integer Ratios in Earth's Global Mean Energy Flow System: Observation and Explanation".

This manuscript is a resubmission of my original paper, JAS-D-23-200, which was rejected (instead of requiring a major revision) by one reviewer. I think the review did not falsify any of my essential statements, as I explained in detail in the attached "Response to the Reviewer", therefore I reconstructed my paper by inserting a Historical introduction to better reveal the motivations of this research. I hope this reorganized and expanded explanation will be more acceptable.

I think my manuscript fits well to your Journal's scope as it contains basic research about the physics of our atmosphere, with several quantitative and deductive aspects of the radiation transfer model implemented by our atmosphere. I do hope the Editors and the readers of this journal will find my results interesting and useful.

This work is the opposite of a sudden recognition: it is a result of more than ten years of research. It is my original work and is not under consideration for publication elsewhere.

Thank you.

Dr. Miklos Zagoni

Budapest, Uri utca 8. Hungary, H-1014 Phone +36 1214 3573 Mobile +36 30 603 7604 Budapest, January 22, 2024 Cost Estimation and Agreement Worksheet

Click here to access/download **Cost Estimation and Agreement Worksheet** Journals_Charge_Form_ms sub after 01Oct2022-Zagoni.pdf

≛

Dear Editors,

As my previous submission was rejected, this new submission is not a major revision but a profound reconstruction of JAS-D-23-0200. Thus, although my response to the former reviewer is irrelevant, I still give a detailed response to the previous review text, to help the Editors judge my approach.

The Chief Editor of the Bulletin of AMS (BAMS) proposed me to submit my manuscript to your Journal of the Atmospheric Sciences. My goal is a deeper understanding of Earth's global mean energy budget.

"Understanding" means different things in different scientific cultures. In the Platonian philosophy, it means to grab the "idea" of something. In the Philosophy of Tao, it means to have the correct Yin and Yang dynamics of the thing. I think, in this sense "Yin" is the observed data of Earth' global mean energy flow system, "Yan" is a theoretical structure, for example, the solution of certain (Schwarzschild-type) radiative transfer equations; and if the two are the same, or at least very similar, we may think we have an "understanding" of the thing.

Max Planck described this dynamics wonderfully: "Because the constant interaction between experimental and theoretical research, which is always inspiration and control, will be also in the future the safest, the only guarantee of the prosperous progress of physical science."

Of course, my paper is not about philosophy; these considerations are only to help to get a view on it. My paper is about recognized numerical structures – small integer relationships – that can be observed in all the published reliable global mean energy flow estimates, from NASA CERES satellite observations, to GEWEX global energy and water cycle studies, to the IPCC energy budgets based on climate models and direct surface observations. This is one part of my work. The other part is to offer some kind of explanation, or interpretation, that is, an "understanding" of this recognition.

The given versions of Schwarzschild's original two-stream relationships are perfectly applicable, and have a solution proved to be identical to the observed numerical structures.

But the Reviewer did not realize the observed structure; instead, she or he declares that my basic Schwarzschild-relationship (repeated in several textbooks exactly in the same form), "cannot be valid".

Only God is able to tell what "can" or "cannot" be valid. We, humans, with our limited experience, might only say that we think this or that seems to be valid. I show several reasons: the derivation of the equations may be given from first principles (as the English astronomer E.A. Milne wrote in his Handbook of Astrophysics in 1930); they are verified in textbooks (like Dennis Hartmann's Global Physical Climatology, 1994, repeated in 2nd Edition in 2016) with a difference of 0.31 Wm⁻²; and, finally, they are satisfied, with an extremely high accuracy on observed datasets.

I recommend these considerations to the interest of the Readers of this submission.

Thank you.

Now my detailed response to the reviewer.

Author's (A) Response to the Reviewer (R)

R: "The author attempts to work out the partition relationships among global mean energy fluxes at the surface and TOA on the basis of two pairs of equations inferred from the radiative transfer principles for gray-atmosphere first developed by Schwarzschild (1906)."

A: No, I do not attempt to work out partition relationships among global mean fluxes. I attempt to control (verify) those equations on published global mean energy fluxes.

R: "One pair is for surface (sensible + latent) heat fluxes and clear-sky/total-sky OLR and the other pair for the net energy absorbed by the surface and clear-sky/total-sky OLR."

A: No, the equations connect surface fluxes to TOA LW fluxes, namely, one pair connects the surface net radiation (sensible + latent heat fluxes) to TOA LW fluxes (OLR in the clear-sky and OLR and LWCRE in the all-sky); the other pair connects the total energy absorbed by the surface to OLR in the clear-sky and to OLR and LWCRE in the all-sky.

R: "I found the second pair of relations is no more than the well-known energy balance equations at the surface and TOA"

A: No, such an energy balance equation was never assumed as an energy balance equation at the surface and TOA. If it was, how is it possible the 2 Wm⁻² difference in the IPCC energy budget? Does it contradict the well-known energy balance? No, they describe a specific (unique) state, and its control (verification) on observed global mean data is one of the main goals of the paper;

R: "and the first pair appears invalid, suggesting the author's misuse (or misinterpretation) of the radiative transfer principles for gray-atmosphere developed by Schwarzschild (1906)".

A: If the first pair is invalid, then the second pair cannot be the well-known energy balance equations since they are direct (single-step) consequence of the first pair (being simply the all-sky versions of the clear-sky pair).

R: "Also the interpretation for the approximations evoked for total-sky energy relationships is inconsistent with the physical characteristics of energy balance equations for gray atmosphere."

A: If the total-sky energy relationships are inconsistent, then how is it possible that they are valid with a difference of 0.1 Wm⁻² on the global energy balance of Stephens et al. (2023), published in BAMS, based on 30 years of GEWEX observations?

R: "Moreover, the so called "arithmetic solution for the four equations" has been done in standard textbooks and therefore, there is nothing new there.

A: How is it possible that this solution of the four equations (where the first pair is said to be invalid and inconsistent with the physical characteristics) has been done in standard textbooks? If the first pair is invalid and the second pair is trivial, then how is it possible that they have the same absolute bias of -2.57 Wm^{-2} and $+2.57 \text{ Wm}^{-2}$, with the mean bias of the four equations together of 0.0007 Wm⁻² (see my manuscript)?

About the "Comments".

R: "I. The interpretation of Eq. I (the equation above L59) is not consistent with the radiative transfer principles for gray-atmosphere. For example, Houghton's Eq. 2.13 (1977), which was cited in the manuscript as theoretical supporting evidence for his Eq. I, is about "a temperature discontinuity at the lower boundary", instead of the relation between the net radiative energy flux at the surface and the OLR, as the author claimed."

A: My Eq. I (the equation above L59) is this: $A - E = A_0/2$. Houghton's Eq. 2.13 (1977) is this: $B_g - B_0 = \Phi/2\pi$. Since B_g is the total absorbed energy at the surface (same as A); B_0 is the surface upward LW emission (same as E), and Φ is the outgoing LW energy at TOA (same as A₀), their difference is the net radiation at the surface. The two equations are identical. I do not give an interpretation; I follow Houghton. The left-hand side is a temperature discontinuity at the lower boundary (in radiative equilibrium), and the right-hand side is half of OLR. They are the same.

R: "Eq. I cannot be valid.".

A: The fact is that it is satisfied by the CERES EBAF Ed2.8 data product (2017; the first 17 years of observation) with a difference of 0.59 Wm⁻², in a time when Earth's energy imbalance (EEI) was regarded 0.58 Wm⁻². It cannot be **more** valid. In the radiative equilibrium model of Dennis Hartmann's book (Global Physical Climatology, 1994, 2nd ed. 2016), the equality is valid with a difference of 0.31 Wm⁻² (see lines 72-77 of my manuscript).

R: "Here are two simple reasons to support this conclusion.

(i) Consider a climate system that does not have atmosphere. In this case, the left hand side of Eq. I is exactly equal to zero and the right hand side is equal to E/2."

A: I consider a climate system that *does have* an atmosphere. That's why I submitted my paper to the Journal of the Atmospheric Sciences, instead of the Journal of Atmosphereless Exoplanets, or the like. Note, in that case the right-hand side is not E/2, but $A_0/2$. I never claimed – and neither did Goody, Houghton or Hartmann – that the equation is valid on planets that does not have atmosphere.

R: "(ii) According to the statement in L107-109, which is correct, left hand side of Eq. I is equal to the sum of surface latent and sensible heat fluxes (i.e., F_{SH+LH}). Should Eq. I be valid, OLR has to be equal to zero in the case that $F_{SH+LH}=0$, which is unphysical."

A: Again, the case when $F_{SH+LH} = 0$ is the case of the Moon, or similar to the Venus or Mars, which I never considered. On Earth, there is enough open water surface in the oceans to release enough latent heat flux, and a suitable atmosphere to generate enough convection (sensible heat flux) to satisfy the condition. The simple all-sky version of this equation is satisfied with a difference of 0.1 Wm⁻² in the GEWEX 30 years energy budget (Stephens et al. 2023, BAMS), see my lines below L179, and my Fig. 1.

R: "Because two of the "*four simple versions of this equation*" considered by the author, i.e., Eqs. (1) and (3), or Eqs. (1a) and (3a) are based on Eq. I, the so-called "validation" results

obtained from Eqs. (1) and (3) or Eqs. (1a) and (3a) are simply misinterpretation of the global energy balance of a climate system."

A: Both Eqs (1) and (3), and Eqs. (1a) and (3a), based on Eq. (I), are valid with differences far within the stated range of uncertainty. The Reviewer should consider this fact, if she or he has a specific interpretation of these equations, at least in the spirit of Max Planck's instruction about the interaction of experimental and theoretical research: if some equations are justified by data, it is advised to take them seriously, independently of our preconceptions or expectations. That's the message of my paper.

R: "2. Applying the energy balance model of a one-layer gray-atmosphere climate system to the difference between the second and first equation the second equation of Eq. (11) of Schwarzschild (1906) yields (his or her Eq. (1))."

A: Really, this is the case when $\tau = 2$ when $\varepsilon = 1$.

R: "Therefore, Eq. II, on which the other two of the "*four simple versions of this equation*" considered by the author, i.e., Eqs. (2) and (4), or Eqs. (2a) and (4a) are based, is only a special case of a one-layer gray-atmosphere climate system, in which the atmosphere is a blackbody atmosphere. Therefore, the so-called "validation" is no more saying the global mean atmosphere behaves more like a blackbody atmosphere according to the global mean radiative energy fluxes at the surface and TOA. Therefore, there is nothing new beyond this well-known fact."

A: Earth's atmosphere acts like $\tau = 2$; this is not at all a well-known fact, this is a model, and it is an experimental result that the equation is valid with this τ very exactly on some energy balance estimates (GEWEX), but there are sizeable differences for example in the IPCC data. It cannot be assumed that the author of the IPCC distribution wouldn't take it into consideration if the equation were a well-known energy balance condition.

R: 3. If one wants to apply a one-layer gray-atmosphere to account for the difference between total-sky and clear-sky radiative energy fluxes at the surface and TOA, the difference has to be attributed to the SW effect of clouds, as the LW portion has to be the same for a blackbody atmosphere. Therefore, the extra term "L" in Eq. III and Eq. IV, which the author is called as "*the longwave cloud radiative effect*" is inconsistent with the fact the atmosphere behaves like a blackbody emitter/absorber from the perspective of the global mean energy balance. "

A: I do not *call* the extra term L as the longwave cloud radiative effect. It is *defined* that way, as the difference of clear-sky and all-sky OLR. This way, longwave radiation transfer in the atmosphere is separated from the longwave cloud radiative effect; the shortwave effect is taken into account in the *all-sky values* on both sides of the equations.

My overall remark is that the Reviewer uses an interpretative approach to equations that are justified (satisfied) with high accuracy by several observed data products, without having one single word about the fact that these equations are *valid* on these datasets.

Thank you for your attention.

Miklos Zagoni

Budapest, Hungary January 22, 2024

1	Integer Ratios in Earth's Global Mean Energy Flow System: Observation
2	and Explanation
3	
4	Miklos Zagoni ^a
5	^a Eotvos Lorand University, Faculty of Natural Sciences, Budapest, Hungary
6	
7	Corresponding author: Miklos Zagoni, miklos.zagoni@t-online.hu
8	

ABSTRACT

10 Integer ratios can be recognized between the components of Earth's global mean energy 11 flow system. If the unit flux is taken to be equal to the longwave cloud radiative effect 12 (LWCRE), each flux components, all-sky and clear-sky, shortwave and longwave, at the top-13 of-atmosphere (TOA) and at the surface, even the components of the non-radiative energy 14 flux (latent heat and sensible heat) are close to a small integer multiple of the unit flux, 15 typically within the stated range of uncertainty for the given flux component. We show the 16 integer ratio structure on several global energy budget estimates based on observed data from 17 different sources (CERES satellite missions, the GEWEX energy and water cycle studies, or 18 IPCC estimates from climate models and direct surface observations). In the effort of trying 19 to find a plausible explanation for this recognition, we present four radiative transfer 20 constraint equations, yielding a part of the observed integer structure. The first equation is a 21 direct consequence of Schwarzschild's original two-stream relationships; the second is a 22 specific case of them. This pair of equations is for clear-sky conditions; the second pair is an 23 evident all-sky version of the first. A straightforward physical interpretation of the equations 24 is suggested. The set of these four equations can be solved, and the solution is a set of small 25 integers, being equivalent to the found ratios in the observation-based datasets.

26

9

27

SIGNIFICANCE STATEMENT

29 Sunlight is the primary energy source of the climate system. Some part of it reflected on 30 the atmosphere and the clouds, some from the surface; the rest is absorbed and re-emitted by 31 the atmosphere and the surface. The resulted energy flow system has shortwave and 32 longwave components and non-radiative fluxes as well, both in cloudless and in average-33 cloudy conditions, published in global mean energy budgets nowadays with an accuracy of 34 some watt-per-square-meters. The purpose of this work is to point out that definite integer 35 ratios exist between the components, valid within the stated range of uncertainty. We present 36 the integer ratio system, and offer a theoretical explanation based on the solution of known 37 radiative transfer equations.

38

28

1. Historical introduction

40 The first reliable estimate of the Earth annual global mean energy flow system, presented in the landmark study of Kiehl and Trenberth (1997), was based primarily on the ERBE data. 41 42 In the next year, Wild et al. (1998) showed a disposition of radiative energy in the global 43 climate system from general circulation models and direct surface observations, exhibiting 44 remarkably differences; the largest is in all-sky downward longwave radiation (DLR), 344 Wm⁻², compared to 324 Wm⁻² in Kiehl and Trenberth (1997). This 20 Wm⁻² discrepancy 45 46 remained unresolved for more than a decade, when Wild (2012) offered a 'facelift' for the picture of the global energy balance, reinforcing to increase DLR by 20 Wm⁻² and suggesting 47 $a + 10 \text{ Wm}^{-2}$ change in non-radiative fluxes (up to a value of 105 Wm⁻²) and a 10 Wm⁻² 48 decrease in solar radiation absorbed by the surface (down to 158 Wm⁻²) which, together, yield 49 a 7 Wm⁻² increase in surface upward longwave (ULW) radiation (397 Wm⁻²). With these 50 changes, the mean values in the global energy flow system have occupied their position 51 52 within typically $\pm 3 \text{ Wm}^{-2}$ as to we know them today. The results from the first decade of CERES observations was summarized in the same year in an updated diagram by Stephens et 53 al. (2012, Figure B1). 54

Studying this depiction in detail, an unexpected recognition can be made. In the longwave part, each flux component is an integer multiple of the longwave cloud effect (given by the value of 26.7 ± 4 Wm⁻²), with differences much smaller than the indicated uncertainty; see Figure 1.

63 There, in added text boxes, we indicated the integer number (one LWCRE = 1) in black bold typeface and the computed value (the integer position multiplied by the unit flux) in 64 Wm⁻², also their difference in circles. The largest difference is 2.5 Wm⁻² (in surface 65 66 emission). It is obvious that the clear-sky and all-sky LW emissions (both to space and to 67 surface) differ by one longwave cloud radiative effect (this comes from the definition of LWCRE). But that the values themselves are very close to integer multiples of LWCRE is 68 really unexpected, counterintuitive and even implausible. How is that possible? By chance? 69 70 The accuracy of the fit makes the mere coincidence improbable; but further investigation is 71 needed.

Next year, in the IPCC Working Group I (The Physical Science Basis) 5th Assessment
Report (Hartmann et al. 2013), the global mean energy budget (Figure 2.11, adapted from
Wild et al. 2013), the integer system could also be found, with two further additional
components. First, the shortwave components (solar absorbed atmosphere, solar down
surface and solar reflected surface) occupy values very close to integer multiple positions;
this way, the non-radiative (turbulent) flux component (the sum of evaporation and sensible

- heat) also finds a place in the integer system. Second, solar reflected at TOA is very
- accurately an integer if regarded on the cross-section disk to incoming solar radiation (that is,
- 80 before division by 4 for spherical weighting); the difference is 0.1 Wm^{-2} , see Figure 2.

Figure 2 The global mean energy budget of the IPCC WGI AR5 (2013, Fig. 2.11) (Hartmann et al.
2013), with our additions in textboxes and circles (as above)

The largest difference is in thermal down surface, 5.1 Wm⁻², still within the stated
uncertainty range of (338, 348). The probability of a mere coincidence has decreased further.

86 One year later an energy budget was presented, based on NASA CERES EBAF radiative

87 data (Loeb 2014). The speciality of this distribution is that each data in the diagram has an

- 88 integer position within the stated range of uncertainty. Here we refined the unit flux as 26.67
- 89 Wm⁻². The TOA fluxes have their place on the cross-section disk with a difference of zero.
- 90 The sensible heat and latent heat components of the convective flux also occupy integer
- 91 positions. The largest difference at the surface is 2.67 Wm⁻²; see Figures 3a and 3b.

92

93Figure 3a The global mean energy budget by Loeb (2014), based on CERES data, with our additions94in textboxes and circles (as above). Unit = 26.67 Wm^{-2} . Each integer multiple value is within the stated

95 range of uncertainty; the largest difference is 2.67 Wm⁻²

97

- 100 Now looking at the most recent GEWEX global energy budget (Stephens et al. 2023),
- 101 with a unit flux of 26.68 Wm⁻², the largest difference at the TOA is 0.62 Wm⁻² (OLR); at the
- 102 surface is 3.38 Wm⁻² in reflection (see Figure 4). Notice the remarkable accuracy of TOA
- 103 incoming solar radiation (0.03 Wm⁻² difference), and in the components of the turbulent flux
- 104 (sensible heat and evaporation).

Since these diagrams depict only all-sky data, we tried the integer system on CERES clear-sky data as well, using the most recent available product, EBAF Edition 4.2, Version 2, release date January 2, 2024, full 23 years of observation, from April 2000 through March 2023, see Table 1. Total solar irradiance is taken to be TSI = 51 units = 1360.68 \pm 0.5 Wm⁻²; notice that the most accurate value is 1360.8 \pm 0.5 Wm⁻² (Kopp and Lean 2011).

114

Table 1 Clear-sky and all-sky N positions, EBAF Edition 4.2 Version 2 data (global monthly means
for 23 full years, time period April 2000 — March 2023, and their difference. Unit flux is 26.68 Wm⁻²

TSI = 51	Clear-sky	Ν	N×unit	Ed4.2	Diff
	SW in	51 /4	340.17	340.19	0.02
TOA	SW up	8 /4	53.36	53.80	0.44
IOA -	LW up	40 /4	266.80	265.95	-0.85
	Net	3/4	20.01	20.44	0.43
<u> </u>	SW Net	8	213.44	211.35	-2.09
	LW down	12	320.16	317.92	-2.24
Surface	LW up	15	400.20	398.64	-1.56
	LW Net	-3	-80.04	-80.72	-0.68
	TOT Net	5	133.40	130.64	-2.76
	All-sky	N	N×unit	Ed4.2	Diff
TOA —	LW up	36 /4	240.12	240.35	0.23
10A	SW up	15 /4	100.05	99.05	-1.00
	SW Net	6	160.08	163.69	3.61
	LW down	13	346.84	346.15	-0.69
Surface	LW up	15	400.20	398.48	-1.72
	LW Net	-2	-53.36	-52.32	-1.04
	TOT Net	4	106.73	111.36	4.63

The largest difference is in Surface Total Net, 2.76 Wm⁻² in the clear-sky and 4.63 Wm⁻² in the all-sky. Note that with the most recent CERES Edition4 instrument calibration improvements, the SSF1deg_Edition4A net imbalance is ~+5 W m⁻² (CERES_SSF1deg-Hour/Day/Month_Ed4A Data Quality Summary Version 2, updated 8/4/2023). It can be stated that each flux component, both clear-sky and all-sky, at TOA and at the surface, shortwave and longwave, is consistent with observations within the stated range of observation / calibration uncertainty.

The primary purpose of this paper has now been fulfilled: to present the integer system. Nonetheless, this structure requires theoretical explanation. We find that four versions of Schwarzschild's (1906, Eq. 11) two-stream radiative transfer relationships are applicable to the global mean energy flow system of Earth, including some of the flux components of Table I. The first relationship describes the SW+LW net radiation at the surface; the second the total SW+LW radiation at the surface; both under clear-sky conditions; the third and fourth equations are their all-sky versions.

132 **2.** Schwarzschild's equation of radiative transfer

133 Schwarzschild (1906, Eq. 11) presented the grey, plane-parallel approximation to the problem of radiation transfer in an absorbing and emitting medium (originally the Sun's 134 135 atmosphere), where a constant flux is coming from the 'far interior' (lower boundary) and 136 leaves the system at the top-of-atmosphere (upper boundary). The atmosphere is assumed to 137 be in radiative equilibrium and in local thermodynamic equilibrium, and in this equation the 138 optical depth is assumed to be 'gray' (that is, one integrated energy flow, 'flux', is being 139 considered). With these conditions, the model seems to be well applicable on the atmosphere 140 Earth-like planets, with an outer energy source coming at the upper boundary and a black 141 surface as the lower boundary.

The equation consists of three terms: the emission of a layer E, the upwelling beam A and
the downwelling beam B are expressed as a function of the constant incoming and emerging
flux A₀ and the optical depth τ:

$$E = A_0(1 + \tau)/2$$
, $A = A_0(2 + \tau)/2$, $B = A_0\tau/2$ Schwarzschild (1906, Eq.11)

145 Emden (1913) realized that there is a discontinuity in the Planck-function at the surface, expressed by the difference of the second and first terms, $\Delta A = A - E$, implying a 146 147 discontinuity between the temperature of the surface and the temperature of the lowest 148 atmospheric layer in radiative equilibrium; but he noted in the same sentence that this 149 discontinuity was greatly diminished by the evaporation of water and convection (this way, 150 discovering radiative-convective equilibrium). Milne (1930) mentions that these relationships 151 may be derived from first principles. We choose this relationship as the first equation of our 152 model.

$$A - E = A_0/2 \tag{I}$$

153 Eq. (I) is shown in the same form for planetary applications in standard atmospheric 154 textbooks like Goody (1964, Eq. 2.115), Houghton (1977, Eq. 2.13) or Goody and Yung (1989, Eq. 2.146), and graphically represented for example in Chamberlain (1978, Fig. 1.4) 155 156 or Hartmann (1994, Fig. 3.11). It evidently applies only for climate systems having an 157 atmosphere; for the Moon and for atmosphereless planets the equality is trivially invalid. 158 Manabe and Strickler (1964, Fig. 4) and Manabe and Wetherald (1967, Fig 5.) reproduce the 159 size of discontinuity (quoted and re-calculated by Hartmann 1994, 2016, Fig. 3.16) under all-160 sky conditions, but do not utilize the equation as a constraint on its magnitude.

File generated with AMS Word template 2.0

161 Hartmann (1994, pp. 61-63, Figs. 3.10-3.11) describes a two-layer radiative equilibrium

- 162 model where the equation is not presented explicitly but its validity can be shows on the
- 163 given data with a difference of 0.31 Wm⁻²: the temperature of the surface is $T_s = 335$ K, the
- 164 temperature of the air adjacent to the surface is $T_{SA} = 320$ K and the effective emission
- 165 temperature at TOA is $T_e = 255$ K, hence $\sigma(T_S^4 T_{SA}^4 T_e^4/2) = -0.31$ Wm⁻².

For planetary applications, A is the total shortwave (SW) plus longwave (LW) energy 166 absorbed by the surface, being equivalent (in equilibrium) with the total energy emitted by 167 168 the surface (upward longwave radiation plus convection, the latter is the sum of latent heat, 169 LH, and sensible heat, SH); E expresses the surface upward longwave radiation, and A₀ the 170 outgoing LW radiation (OLR) at the top-of the atmosphere (TOA). The equation connects the 171 surface net SW + LW radiation (SH + LH) to half of the outgoing longwave flux at TOA, independently of the optical depth. It is a requirement that the surface of the planet should 172 173 have the opportunity to release enough latent heat to fulfill the equality, which requirement is 174 satisfied by the open evaporating surfaces of Earth's oceans. Since in the original logic 175 (deduction for the Sun's atmosphere) no clouds were considered, we regard this a clear-sky 176 equation.

177 Stephens et al. (1994) use the same model, Eq. (1a) and (1b) describing the transfer 178 equations in radiative equilibrium, with a solution in Eq. (5a) and (5b) for the upward and 179 downward hemispheric fluxes:

180	$F\uparrow(\tau_S)=\sigma T_S{}^4=F_\infty(2+\tau_S)/2$	(Stephens et. al 1994, 5a)
181	$F{\downarrow}(\tau_S)=F_g =F_\infty\tau_S\!/2$	(Stephens et. al 1994, 5b)

182 These relationships, with $F_0(\tau_S) = \sigma T_0^4 = F_\infty (1 + \tau_S)/2$, are equivalent with the three terms 183 in Schwarzschild's (1906, Eq. 11); hence $\Delta \sigma T_S^4 = \sigma T_S^4 - \sigma T_0^4 = F_\infty/2$, as in Eq. (I).

184 The second term in Schwarzschild's Eq. (11) describes the total energy absorbed and 185 emitted at the surface as a function of OLR and the optical depth. We tried the equation with 186 several optical depth values. $\tau = 0$ defines the upper boundary; $\tau = 1$ gives the fluxes where 187 OLR is generated; we found that the choice of $\tau = 2$ at the surface satisfies the equations in all 188 datasets. Therefore, the second equation of our model will be, still for clear-sky conditions:

$$\mathbf{A} = 2\mathbf{A}_0 \tag{II}$$

File generated with AMS Word template 2.0

189 A geometric representation of Eq. (II) is shown in textbooks of Hartmann (1994, Fig.

190 2.3), or Marshall and Plumb (2008, Fig. 2.7), where the greenhouse effect is introduced by

191 the simplest radiative equilibrium model, consisting of a surface and a single shortwave-

192 transparent, infrared-opaque atmospheric layer. In this model the LW radiation emitted by the

193 surface is absorbed by the atmosphere completely and emitted upward and downward

194 equally; hence the energy emitted by the surface is twice the emerging LW flux at TOA.

195 Notice that the choice of $\tau = 2$ defines the first term in Schwarzschild (1906, Eq. 11) as 196 $E = 3A_0/2$, thus Eqs. (1) and (2) together determine a ratio of $\Delta A : A_0 : E : A = 1 : 2 : 3 : 4$; 197 same as in Table 1 for the corresponding flux components.

As the all-sky versions of these two relationships are created by separating atmospheric radiation transfer from the longwave cloud radiative effect (LWCRE). Our third equation therefore will be the same as Eq. (I), with all-sky values in the left-hand side, all-sky A₀ on

201 the right-hand side and L stands for LWCRE:

$$A - E = (A_0 - L)/2$$
 (III)

The fourth equation is created from Eq. (II), again with all-sky value in A and A₀, and adding the longwave cloud effect:

$$A = 2A_0 + L \tag{IV}$$

204 To compare to observed data, we write these equations in CERES notation. Let be

205 Surface SW net = Surface (SW down – SW up); Surface LW net = Surface (LW down – LW

206 up) and TOA
$$LW = OLR$$
, then

Surface (SW net + LW net) (clear-sky) =
$$OLR(clear-sky) / 2$$
 (1)

Surface (SW net + LW down) (clear-sky) =
$$2OLR$$
(clear-sky) (2)

Surface (SW net + LW net) (all-sky) =
$$[OLR(all-sky) - LWCRE] / 2$$
 (3)

Surface (SW net + LW down) (all-sky) =
$$2OLR(all-sky) + LWCRE$$
 (4)

207 If there is equilibrium at the surface, the absorbed and emitted energy are equal, and the

sensible heat (SH) plus latent heat (LH) flux components are equal to the net radiation at the
surface, thus the equations look like:

Surface
$$(SH + LH)$$
 (clear-sky) = OLR(clear-sky) / 2 (1a)

Surface (LW up + SH + LH) (clear-sky) =
$$2OLR$$
(clear-sky) (2a)

12

File generated with AMS Word template 2.0

Surface (SH + LH) (all-sky) = [OLR(all-sky) - LWCRE] / 2 (3a)

Surface (LW up + SH +LH) (all-sky) =
$$2OLR(all-sky) + LWCRE$$
 (4a)

We validate the equations on several published global mean energy flow distributions (Section 3) and show that this set of equations has a numerical solution where a part of observed integer ratio system appears (Section 4).

213 **3. Validation of the four equations**

a. Stevens and Schwartz (2012)

Stevens and Schwartz (2012, see their Table 1) give an estimate of Earth's global mean
energy flow system based on observation and simulations, with the following all-sky data:
Latent heat flux = 86, Sensible heat flux = 20, OLR = 239; and calling LWCRE from CERES
as 26.5 Wm⁻² the all-sky net equations (3a) and (4a) look like:

219 Sensible heat + latent heat =
$$(Outgoing LW - LWCRE)/2$$
 (3a)

- 220 $20 + 86 = (239 26.5)/2 0.25 \text{ Wm}^{-2}$ Stevens and Schwartz (2012)
- 221 Sensible heat + latent heat + Surface upward $LW = 2 \times Outgoing LW + LWCRE$ (4a)
- 222 $20 + 86 + 397 = 2 \times 239 + 26.5 1.5 \text{ Wm}^{-2}$ Stevens and Schwartz (2012)
- 223 The differences are 0.25 Wm^{-2} and 1.5 Wm^{-2} , resp.
- 224

b. NASA Energy and Water-cycle Study (L'Ecuyer et al. 2015)

This study aims to apply balance constraints on energy and water cycles since in

- 227 contemporary flux datasets surface net radiation exceeds the corresponding turbulent heat
- 228 fluxes by 13-24 Wm⁻². Based on regional assessments of the components of the hydrological
- 229 cycle (evaporation, precipitation and runoff), their best estimate of the net radiation at the
- surface (and therefore the sum of the sensible and latent heat flux) globally is 106 Wm⁻²,
- which can be regarded as the most accurate estimate. The assessment is constrained only to
- all-sky conditions. Since longwave cloud effect (LWCRE) is not indicated, we took it from
- the L'Ecuyer et al. (2019) [27.1 Wm⁻² at TOA and 26.3 Wm⁻² at the surface] as the mean
- value of 26.7 Wm^{-2} (same as in Stephens et al. 2012):

SFC (SW net + LW net) = SH + LH =
$$[OLR - LWCRE]/2$$
 (3a)
164 - 58 = 25 + 81 = $(238 - 26.7)/2 + 0.35$ L'Ecuyer et al.

SFC (SW net + LW down) = ULW + SH + LH = 2OLR + LWCRE (4a)
$$164 + 341 = 399 + 25 + 81 = 2 \times 238 + 26.7 + 2.3$$
 L'Ecuyer et al.

The difference in the net all-sky equation (3a) is only 0.35 Wm⁻², less than the indicated Net Absorption at the surface, 0.45 ± 0.4 Wm⁻². The noted uncertainty in the sensible heat flux (25 Wm⁻²) and latent heat flux (evaporation) (81 Wm⁻²) are ± 4 Wm⁻². The mean bias of the two all-sky equation is 1.33 Wm⁻².

239

240 c. Stephens and L'Ecuyer (2015)

241 Stephens and L'Ecuyer (2015) in an update to L'Ecuyer et al. (2015) provided a second

242 optimization where the TOA fluxes are more tightly constrained to CERES EBAF fluxes.

243 OLR and downward longwave radiation (DLR) have been increased, and, as a result,

turbulent fluxes become 108 Wm^{-2} (with SH = 26 Wm^{-2} , evaporation = 82 Wm^{-2}); with the

accuracy of Eq. (3a) as 1.35 Wm^{-2} and of Eq. (4a) as 0.3 Wm^{-2} ; the mean bias of Eqs. (3a)

246 and (4a) has decreased to 0.82 Wm^{-2} .

SFC (SW net + LW net) = SH + LH = (OLR - LWCRE)/2 (3a)

$$163-55 = 26 + 82 = (240 - 26.7)/2 + 1.35$$
 St & L'E

SFC (SW net + LW down) = ULW + SH +LH = 2OLR + LWCRE (4a)
$$163 + 344 = 399 + 26 + 82 = 2 \times 240 + 26.7 + 0.3$$
 St & L'E

247

248 *d. Hartmann* (2016)

Hartmann (2016) has the following values (data from its Fig. 2.4, LWCRE = 26 Wm^{-2} from its Table 3.2):

Thermals + Latent heat =
$$(OLR - LWCRE) / 2$$
 (3a)
20 + 88 = $(239 - 26)/2 + 1.5$ Hartmann

Thermals + Latent heat + IR emission from surface = 20LR + LWCRE	(4a)
$20 + 88 + 396 = 2 \times 239 + 26$	Hartmann

- Eq. (3a) is valid with a difference of 1.5 Wm^{-2} ; Eq. (4a) has zero difference.
- 252

253 *e. CERES EBAF Edition 2.8*

254 At the time this study has started, the best satellite-based data product was CERES EBAF 255 Edition 2.8, spanning over 16 years (from March 2000 to February 2016). The accuracy of Eq. (1) is 0.60 Wm⁻², with the immediate consequence of connecting surface net radiation 256 257 unequivocally to half of the outgoing TOA LW radiation in the clear-sky. The estimated heat uptake of Earth in that time was the same, 0.58±0.38 Wm⁻² (Loeb et al. 2012). The same 258 accuracy of Eq. (2), 0.59 Wm⁻² is a strong verification of the choice of $\tau = 2$. Bias of the all-259 sky equations (2.4 Wm⁻² and 2.3 Wm⁻²) is half the magnitude of the CERES instrument 260 calibration uncertainty of 4.2 Wm^{-2} or of the standard CERES TOA net flux of 6.5 Wm^{-2} 261 (Loeb et al. 2009): 262

SFC (SW net + LW net) (clear) = OLR (clear)/2(1) 214.32 + 316.26 - 398.40 = 265.59/2 - 0.60Ed2.8 SFC (SW net + LW down) (clear) = 2OLR (clear) (2) $214.32 + 316.26 = 2 \times 265.59 - 0.59$ Ed2.8 SFC (SW net + LW net) (all) = (OLR(all) - LWCRE) / 2(3) 162.34 + 345.15 - 398.27 = (239.59 - 25.99)/2 + 2.42Ed2.8 SFC (SW net + LW down) (all) = 2OLR(all) + LWCRE(4) Ed2.8 $162.34 + 345.15 = 2 \times 239.59 + 25.99 + 2.30$

263 f. CERES EBAF Edition 4.1

Using this data product on the full available time range (22 running years from April 2000
through March 2022; 264 monthly means), the mean bias of the four equations together is
0.0007 Wm⁻², indiscernible from zero in the netCDF file.

$$240.8680 - 29.0724 + 317.4049 = 2 \times 266.0122 - 2.8238$$
 Ed4.1

SFC (SW down – SW up + LW down – LW up) =
$$[OLR (all) – LWCRE]/2$$
 (3)
186.8544 – 23.1629 + 345.0108 – 398.7550 = $(240.2450 – 25.7671)/2 + 2.7083$ Ed4.1

SFC (SW down – SW up + LW down) = 2OLR (all) + LWCRE (4)

$$186.8544 - 23.1629 + 345.0108 = 2 \times 240.2450 + 25.7671 + 2.4450$$
 Ed4.1
Mean bias: 0.0007 Wm⁻².

267

268	g. GEWEX (Stephens et al. 2023)	
	Sensible heat + Evaporation = $(OLR - LWCRE) / 2$	(3a)
	25.4 + 81.1 = (239.5 - 26.7)/2 + 0.1	GEWEX
	Surface (SW net + LW down) = 20LR + LWCRE	(4)
	$160.7 + 345.1 = 2 \times 239.5 + 26.7 + 0.1$	GEWEX

This quantification is based on 30 years of up-to-date GEWEX data products (Stephens et al.
2023 Fig. SB3, reproduced in our Fig. 4). Since neither clear-sky data nor cloud effects are
indicated, we take the LWCRE again from the study of L'Ecuyer et al. (2019) with a mean
value of 26.7 Wm⁻² as above. Both of the all-sky equations are valid with a difference of 0.1
Wm⁻².

277

4. Solution to the equations

279 *a. The integer system*

280 The geometric representation of $A = 2A_0$ is given in Fig. 5 (based on Hartmann 1994, Fig.

281 2.3).

282

287

Figure 5 The simplest greenhouse model representing Eq. (2), $A = 2A_0$, in radiative equilibrium. The ratios are indicated. After Hartmann (1994, Fig. 2.3)

Improving the model by allowing convective fluxes at the surface according to Eq. (1),

286 $A - E = \Delta A = A_0/2$ and $E = 3A_0/2$, the model will become as shown in Fig. 6:

Figure 6 Left, the geometry according to Eq. (2); Middle: including the net radiation at the surface according to Eq. (1) and (2). The right panel is equivalent to the middle, after multiplying the unit by ten

290 In radiative equilibrium, $\Delta A = A_0/2$ is discontinuity at the surface. In radiative-convective

equilibrium, $\Delta A = A_0/2$ is the convective flux. Since the unit is not yet specified, as a

292 preparation, we multiply it by ten.

Including the all-sky Eqs. (3) and (4) and choosing the longwave cloud radiative effect as the unit: LWCRE = 1 (in the diagrams shown in red bold typeface), we have a geometric solution for the four equations, see Fig. 7.

296

Figure 7 Idealized geometric equilibrium representation of the four equations with integers. No
 reference to atmospheric gaseous composition was made. Surface fluxes are unequivocally connected to
 the TOA fluxes. Numbers shown in red bold typeface are integer multiples of L = LWCRE = 1

300

301

302 5. Conclusions

303 Integer ratios and specific arithmetic relationships may be recognized in observation-304 based global mean energy flow distributions published in the last decade, with the unit flux 305 being equal to the longwave cloud radiative effect. The integer multiple system appears both for TOA, in-atmosphere and surface fluxes, for shortwave and longwave radiations, even for 306 307 the non-radiative flux components, both under clear-sky and all-sky conditions. The observed 308 flux values are close to the integer positions typically within the stated range of uncertainty. 309 This is a common feature of global mean flux estimates coming from different sources 310 (satellite-based observations, climate models or hydrological cycle assessments).

Our primary task in this study was to call attention to the integer structure and present it on all the available data sources. We also attempted to give a theoretical explanation, which was found in Schwarzschild's (1906) original two-stream equations for radiation transfer. A part of the global mean flux components was derived from four specific versions of the

315	equations: a pair for the net radiation and another for the total absorbed (and emitted) energy
316	at the surface, in for clear-sky and all-sky conditions. The net equations are independent of
317	the optical thickness; the total energy equations are taken at $\tau = 2$. Each equation connects
318	energy at the surface to TOA LW radiation. On the completed, archived satellite-based
319	CERES EBAF Edition 4.1 data product (full 22 years from April 2000 through March 2022)
320	the difference of the individual equations is \pm 3 Wm ⁻² , less than the stated range of CERES
321	data uncertainty; the mean bias of the four equations is 0.0007 Wm^{-2} .
322	
323	Conflict of interest. The author declares of no conflict of interest.
324	Funding. This research has not received funding in the past decade.
325	Data availability. CERES data in this manuscript were obtained from the NASA Langley
326	Research Center CERES ordering tool at https://ceres.larc.nasa.gov/. Other data were
327	obtained from published IPCC, NEWS and GEWEX research papers and from books as
328	detailed in the References list.
329	
329 330	REFERENCES
329330331	REFERENCES
329330331332	REFERENCES CERES_EBAF_Ed4.1 Data Quality Summary Version 3, 12/9/2021,
 329 330 331 332 333 	REFERENCES CERES_EBAF_Ed4.1 Data Quality Summary Version 3, 12/9/2021, <u>https://ceres.larc.nasa.gov</u>
 329 330 331 332 333 334 	REFERENCES CERES_EBAF_Ed4.1 Data Quality Summary Version 3, 12/9/2021, <u>https://ceres.larc.nasa.gov</u> Chamberlain, J.W., 1978: Theory of planetary atmospheres, Academic Press, New York,
 329 330 331 332 333 334 335 	REFERENCES CERES_EBAF_Ed4.1 Data Quality Summary Version 3, 12/9/2021, <u>https://ceres.larc.nasa.gov</u> Chamberlain, J.W., 1978: Theory of planetary atmospheres, Academic Press, New York, London.
 329 330 331 332 333 334 335 336 	REFERENCES CERES_EBAF_Ed4.1 Data Quality Summary Version 3, 12/9/2021, <u>https://ceres.larc.nasa.gov</u> Chamberlain, J.W., 1978: Theory of planetary atmospheres, Academic Press, New York, London. Emden, R., 1913: Über Strahlungsgleichgewicht und atmosphärische Strahlung.
 329 330 331 332 333 334 335 336 337 	REFERENCES CERES_EBAF_Ed4.1 Data Quality Summary Version 3, 12/9/2021, <u>https://ceres.larc.nasa.gov</u> Chamberlain, J.W., 1978: Theory of planetary atmospheres, Academic Press, New York, London. Emden, R., 1913: Über Strahlungsgleichgewicht und atmosphärische Strahlung. Sitzungsberichte der mathematisch-physicalischen Klasse der K.B. Akademie der
 329 330 331 332 333 334 335 336 337 338 	REFERENCES CERES_EBAF_Ed4.1 Data Quality Summary Version 3, 12/9/2021, <u>https://ceres.larc.nasa.gov</u> Chamberlain, J.W., 1978: Theory of planetary atmospheres, Academic Press, New York, London. Emden, R., 1913: Über Strahlungsgleichgewicht und atmosphärische Strahlung. Sitzungsberichte der mathematisch-physicalischen Klasse der K.B. Akademie der Wissenschaften, München, 43, 55-142.
 329 330 331 332 333 334 335 336 337 338 339 	 REFERENCES CERES_EBAF_Ed4.1 Data Quality Summary Version 3, 12/9/2021, <u>https://ceres.larc.nasa.gov</u> Chamberlain, J.W., 1978: Theory of planetary atmospheres, Academic Press, New York, London. Emden, R., 1913: Über Strahlungsgleichgewicht und atmosphärische Strahlung. Sitzungsberichte der mathematisch-physicalischen Klasse der K.B. Akademie der Wissenschaften, München, 43, 55-142. Goody, R. M., 1964: Atmospheric Radiation I: Theoretical Basis. Oxford Univ. Press,
 329 330 331 332 333 334 335 336 337 338 339 340 	 REFERENCES CERES_EBAF_Ed4.1 Data Quality Summary Version 3, 12/9/2021, <u>https://ceres.larc.nasa.gov</u> Chamberlain, J.W., 1978: Theory of planetary atmospheres, Academic Press, New York, London. Emden, R., 1913: Über Strahlungsgleichgewicht und atmosphärische Strahlung. Sitzungsberichte der mathematisch-physicalischen Klasse der K.B. Akademie der Wissenschaften, München, 43, 55-142. Goody, R. M., 1964: Atmospheric Radiation I: Theoretical Basis. Oxford Univ. Press, London.
 329 330 331 332 333 334 335 336 337 338 339 340 341 	 REFERENCES CERES_EBAF_Ed4.1 Data Quality Summary Version 3, 12/9/2021, <u>https://ceres.larc.nasa.gov</u> Chamberlain, J.W., 1978: Theory of planetary atmospheres, Academic Press, New York, London. Emden, R., 1913: Über Strahlungsgleichgewicht und atmosphärische Strahlung. Sitzungsberichte der mathematisch-physicalischen Klasse der K.B. Akademie der Wissenschaften, München, 43, 55-142. Goody, R. M., 1964: Atmospheric Radiation I: Theoretical Basis. Oxford Univ. Press, London. Goody, R.M. and Yung, Y.L., 1989: Atmospheric Radiation I: Theoretical Basis, 2nd Ed.
 329 330 331 332 333 334 335 336 337 338 339 340 341 342 	 REFERENCES CERES_EBAF_Ed4.1 Data Quality Summary Version 3, 12/9/2021, <u>https://ceres.larc.nasa.gov</u> Chamberlain, J.W., 1978: Theory of planetary atmospheres, Academic Press, New York, London. Emden, R., 1913: Über Strahlungsgleichgewicht und atmosphärische Strahlung. Sitzungsberichte der mathematisch-physicalischen Klasse der K.B. Akademie der Wissenschaften, München, 43, 55-142. Goody, R. M., 1964: Atmospheric Radiation I: Theoretical Basis. Oxford Univ. Press, London. Goody, R.M. and Yung, Y.L., 1989: Atmospheric Radiation I: Theoretical Basis, 2nd Ed. Oxford Univ. Press, London.

- Hartmann, D.: Global physical climatology, 2016, 2nd Ed. Academic Press, San Diego, New
 York.
- Hartmann, D. L. and Coauthors, 2013: Climate Change: The Physical Science Basis. Fifth
 Assessment Report of the IPCC. Cambridge Univ Press.
- 348 Houghton, J.: The Physics of Atmospheres, 1977: Cambridge Univ Press.
- Kiehl, J. and Trenberth, K., 1997: Earth's Annual Global Mean Energy Budget. Bull Am
 Meteor Soc 78:197–208.
- Kopp, G. and Lean, J., 2011: A new, lower value of total solar irradiance. Geophys. Res.
 Lett., 38, L01706.
- L'Ecuyer, T.S., and Coauthors, 2015: The Observed State of the Energy Budget in the Early
 Twenty-First Century, J. Climate, 28, 8319-8346.
- L'Ecuyer, T., Y. Hang, A. V. Matus and Z. Wang, 2019: Reassessing the Effect of Cloud
 Type on Earth's Energy Balance in the Age of Active Spaceborne Observations. Part I:
 Top of Atmosphere and Surface. J. Climate, 32:6197-6217.
- Loeb, N. G. and Coathors, 2009: Toward Optimal Closure of the Earth's Top-of-Atmosphere
 Radiation Budget. Journal of Climate, 22, 3, 748-766.
- Loeb, N. G. and Coauthors, 2012: Observed changes in top-of-the-atmosphere radiation and
 upper-ocean heating consistent within uncertainty. Nature Geoscience, 5(2), 110-113.
- 362 Loeb, G. N. 2014: The Recent Pause in Global Warming. Langley Colloquium Series
- 363 Lecture, Langley Research Center, August 5, 2014
- Loeb, N. G. and Coauthors, 2020: Toward a Consistent Definition of Clear-Sky Radiative
 Fluxes. J. Climate, 33(1), 61-75.
- Manabe, S, and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a
 convective adjustment. J. Atmos. Sci., 21, 361–385.
- Manabe, S. and R. T. Wetherald, 1967: Thermal Equilibrium of the Atmosphere with a Given
 Distribution of Relative Humidity. Journal of Atmospheric Sciences 24, 241-259.
- 370 Milne, E. A., 1930: Thermodynamics of the stars. Handbuch der Astrophysik, 3.
- 371 Raghuraman, S.P., D. Paynter, V. Ramaswamy, 2019: Quantifying the Drivers of the Clear
- 372 Sky Greenhouse Effect, 2000–2016. JGR Atmospheres, 124 (21), 11354-11371.

- 373 Schwarzschild, K: On the equilibrium of the sun's atmosphere. Nach. K. Gesell, Wiss.
- Göttingen, Math-Phys. Klasse 195, 41–53, 1906. In Selected Papers on the Transfer of
 Radiation (D. H. Menzel, ed.). Dover, New York, 1966.
- 376 Stephens, G. L. and Coauthors, 1994: A. Slingo, M. J. Webb, P. J. Minnett, P. H. Daum, L.
- 377 Kleinman, I. Wittmeyer, and D. A. Randall: Observations of the Earth's Radiation
- 378 Budget in relation to atmospheric hydrology. 4. Atmospheric column radiative cooling
- over the world's oceans. Journal of Geographic Research, 99, D9, 18,585-18,604.
- Stephens, G. L. and Coauthor, 2012: An update on Earth's energy balance, Nat Geosci, 5,
 691-696.
- Stephens, G. L. and Coauthors, 2023: The first 30 years of GEWEX. Bull. Amer. Meteor.
 Soc., 104 (1), E126-E157.
- 384 Stephens, G. L. and T. L'Ecuyer, 2015: The Earth's energy balance, Atm Res, 166, 195-203.
- Stevens, B. and Schwartz, S., 2012: Observing and Modeling Earth Energy flows. Surv
 Geophys 33, 779-816.
- Wild, M, 2012: A facelift for the picture of global energy balance. Atmospheric Environment
 55, 366-367
- Wild, M. and Coauthors: The global energy balance from a surface perspective. Clim Dyn 40,
 3107-3134
- Wild, M., 2020: The global energy balance as represented in CMIP6 climate models. Clim
 Dyn 55, 553-577.

393